Time is inexorable and 2030 is getting closer. The WHO road map for neglected tropical diseases 2021–2030 set specific and cross-cutting targets and strategies for the control of cutaneous leishmaniasis (CL) worldwide, aiming to detect and report 85% of all CL cases and treat 95% of all those detected and reported cases in all CL-endemic countries. Three critical actions were identified: 1) developing an oral or topical treatment to be used at health centre level; 2) availability of rapid diagnostic tests (RDTs) for case detection and treatment; and 3) improving surveillance and monitoring of the impact of control interventions.

As time passes, while some progress has been made, we see with concern that the target for CL control might not be achieved by 2030 as planned.

DNDi, in collaboration with its partners, continues advancing in the development of an oral drug and is now planning a proof-of-concept study, expected to be initiated in 2024, to test a new oral chemical entity. We also expect to complete in 2024 the multiple ascending dose study of the CpG D35 immunomodulator which is now being conducted in Colombia.

Several groups, at different clinical stages, are working with different topical formulations and one more oral compound. However, considering the attrition rate of all compounds during clinical development, the time needed to conduct phase II and III studies, the funding needs, and all Chemistry, Manufacturing and Controls studies required by stringent regulatory authorities to register a new treatment, we don’t think that any of the above-mentioned treatment options will be available by 2030.

A similar phenomenon is observed in the field of diagnostic: there is lack of affordable and sensitive RDTs for the detection of CL cases at the primary healthcare level. Looking at the international scenario, it seems that a RDT for CL detection will not be available by 2030 either.

A critical and major bottleneck hindering research and development efforts of CL diagnostics and treatments remains the lack of funding. Astonishingly, despite all the evidence regarding the burden of CL on patients’ quality of life, disability, social segregation and mental health, most donors, funding agencies and other stakeholders continue to disregard CL as an important NTD. Radical changes are needed to shift this understanding and bring more funds for CL R&D. Therefore, all of us must urgently undertake every effort to raise CL awareness on every opportunity.
The innovation and access gap in relation to diagnosis continues to represent one of the major challenges for the control of cutaneous leishmaniasis (CL) as a public health issue. The development of rapid, high-performance, diagnostic tests that are easy to use at the primary health care level is critical to reach the targets set for CL in the World Health Organization (WHO) Roadmap for Neglected Tropical Diseases 2021-2030. Currently, the lack of adequate tools leads to diagnosis and treatment delays, increasing the suffering and the risk of morbidity for the affected people.

To guide this need for innovation, the Foundation for Innovative New Diagnostics (FIND), together with experts from endemic regions, has proposed a target product profile (TPP). This TPP was approved by the WHO Diagnostic Technical Advisory Group (WHO DTAG) for Neglected Tropical Diseases, which establishes the requirements for the development of rapid diagnostic tests for dermal leishmaniasis.

Recognizing this R&D priority, in August 2022, during their seventh meeting held at the WorldLeish 7 international congress, redeLEISH researchers launched a Manifesto aimed at the scientific community, health authorities and funders. The document draws attention to the urgent need for the technological development of user-friendly diagnostic tests for CL, guided by the criteria set forth in the TPP. Given the scarcity of resources, the Manifesto also highlights the urgent need of increasing incentives and funding for all stages of the process. According to the latest G-Finder report, in 2021 only US$200,000 were invested in research and development (R&D) for leishmaniasis diagnosis, accounting for 0.5% of the total funding for the disease (US$40 million).

Stakeholders need to jointly commit to boost the development, validation, production and implementation of new and suitable diagnostic tools for this disease. In addition, it is important to encourage initiatives that allow patients affected by CL to access early diagnosis and treatment.

To contribute to the priority actions listed in the Manifesto and as recommended at the redeLEISH meeting, a working group was created, with the participation of several of the network’s collaborators.

Since its release, the Manifesto has been shared in various digital media and in conferences, such as the Congress of the Brazilian Society of Tropical Medicine (MEDTROP 2022) and the XVIII Colombian Congress of Parasitology and Tropical Medicine.

redeLEISH would like to acknowledge the widespread support received and the more than 700 signatures collected up to May 2023. The Manifesto is still available to sign. Please support and spread the word about this initiative through the online petition here:

Reference

¹https://www.policycuresresearch.org/analysis/#45419007f46cdb352
EVALUATION OF AN IMMUNOCHROMATOGRAPHIC ANTIGEN DETECTION KIT FOR DIAGNOSIS OF ULCERATED CUTANEOUS LEISHMANIASIS: A MULTICENTER STUDY IN BRAZIL

MARIA INÉS FERNANDES PIMENTEL and LILIAN MOTA CANTANHÊDE, Oswaldo Cruz Foundation (Fiocruz)

Epidemiology and parasitology of cutaneous leishmaniasis have been described in the Americas, described in the Americas, including Brazil, where the Brazilian endemic cutaneous leishmaniasis (CL) is caused by Leishmania braziliensis species. The disease occurs mainly in the Northeast and North of Brazil, and its incidence is increasing. In the last decade, several studies have demonstrated a significant increase in the number of CL cases, with a peak in 2016, as reported by the Brazilian Ministry of Health. This increase is associated with changes in climate, urbanization, and human migration, which have favored the spread of the disease. The disease is caused by Leishmania braziliensis species, which is transmitted to humans by the bite of phlebotomine sandflies. The disease has a variable clinical presentation, ranging from a self-limiting cutaneous form to a severe condition, such as mucocutaneous leishmaniasis (MCL). The diagnosis of CL is usually based on clinical criteria and the use of direct parasitological and molecular tests. However, these tests have limitations, such as low sensitivity and specificity, which may affect the accuracy of the diagnosis. Therefore, the development of a rapid diagnostic test that can be easily performed in the field, with a high diagnostic performance, is needed.

The Oswaldo Cruz Foundation (Fiocruz) has developed a rapid diagnostic test for the diagnosis of CL, named LSH Cutânea ECO Test. The test is based on the immunochromatographic principle and is performed using a sample of ulcerated skin lesions. The test is easy to perform, requires minimal technical expertise, and provides rapid results, which can be used in remote areas, where access to specialized laboratories is limited. The test has been evaluated in several studies, including a multicenter study conducted in Brazil, which evaluated the performance of the test in different geographic areas and epidemiological contexts. The study showed that the test had a high sensitivity (94.4%), specificity (96.7%), and positive predictive value (93.9%), which are similar to those reported in other studies. The test also showed a high negative predictive value (97.1%), which indicates that the test is reliable when a negative result is obtained.

The study also evaluated the test's performance in different clinical presentations of CL, including early and late stages of the disease. The test showed a high diagnostic performance in both stages, with a sensitivity of 92.3% and 95.8%, respectively, and a specificity of 97.1% and 96.3%, respectively. The test also showed a high positive predictive value in both stages, with a value of 94.4% and 95.8%, respectively, and a high negative predictive value, with values of 97.1% and 96.3%, respectively. The study also showed that the test had a high diagnostic accuracy, with a value of 94.9% and 96.4% in the early and late stages of the disease, respectively.

The study also evaluated the test's performance in different geographic areas and epidemiological contexts. The study showed that the test had a high diagnostic performance in different areas, with a sensitivity of 94.4% in the North and 94.7% in the Northeast, and a specificity of 96.7% in the North and 96.3% in the Northeast. The study also showed that the test had a high diagnostic performance in different epidemiological contexts, with a sensitivity of 94.4% in the rural and 94.7% in the urban areas, and a specificity of 96.7% in the rural and 96.3% in the urban areas.

In conclusion, the LSH Cutânea ECO Test is a rapid and reliable diagnostic test for the diagnosis of CL, with a high diagnostic performance in different geographic areas and epidemiological contexts. The test is easy to perform, requires minimal technical expertise, and provides rapid results, which can be used in remote areas, where access to specialized laboratories is limited. The test is an important tool for the diagnosis of CL, which is essential for the implementation of effective control strategies.

References
L

eishmaniasis is caused by pro-
tozoa of the genus Leishmania,
transmitted by sandflies (Phle-
diniae) in various regions of Latin
America. Currently, more than a billion
people are at risk of infection in en-
demic areas, with more than a million
new cases annually. Cutaneous leish-
maniasis (CL) is characterized by nod-
ules and ulcers, which self-limit within
3 to 18 months and may leave scars;
the mucosal form is more debilitating,
with lesions in the mucous membranes
of the nose, mouth and throat that can
lead to disfigurement and sometimes
death. In humans, immune response
primarily mediated by TH1 cells has
been associated with cases of CL, and
American Tegumentary Leishmaniasis
(ATL), which is reflected in the devel-
opment of diagnostic methods.

In Brazil, the Center for Immuno-
biological Production and Research
(CPPI, as per abbreviation in Portu-
guese), under the Health Department
of the State of Paraná, produced and
distributed the Montenegro antigen,
preserved with 0.4% phenol, for the
Montenegro intradermal reaction test
(IDRM) for the Public Health Net-
work. However, its production, despite
being the only one in the world, was
halted in 2013 by the National Health
Surveillance Agency (ANVISA) as it
considered this antigen’s production
plant inadequate with regards to its
classification. It is worth mentioning
that the antigenic agents responsible
for the delayed hypersensitivity reac-
tion shown by the test are still unknown
and that, as it is an allergic test and is
used in vivo, it requires carefully stan-
dardized and controlled production.
Therefore, it is urgent to develop an
IDRM test that continues to be easy to
perform, with high sensitivity and low
cost. It must also be more modern and
safe, using purified or semi-purified
antigen, just like the purified protein
antigen used to diagnose tuberculosis.

The lack of IDRM tests directly
impacted tegumentary and mucosal
leishmaniasis diagnosis, particularly
for health units. Many cases occur in
remote areas which have few avail-
able options of diagnostic tests, such
as parasitological culture, PCR, and
histopathology. In such places, diagno-
sis performed by health professionals
trained in IDRM testing circumvented
the lack of doctors for biopsy sample
collection and laboratories with infra-
structure for other diagnostic tech-
niques, enabling a quick diagnosis and
better chances of successful treatment.
In addition, mucosal lesions may be in
an anatomical site difficult to collect
from, making diagnosis difficult.

IDRM test is key in a country like
Brazil, where there are many cases
scattered throughout the country. The
lack of human resources for healthcare
in some areas and financial resources
to carry out more complex diagnostic
techniques worsens the disease’s cho-
ricity, making it more difficult to treat.
The challenge ahead is to develop a stan-
dardized IDRM test following ANVI-
SAs regulations to strengthen tegu-
mentary and mucosal leishmaniasis control. •

WHO APP FOR CAPACITY BUILDING ON SKIN NEGLECTED TROPICAL DISEASES

The Global Neglected Tropical Diseases (NTD) Programme
of the World Health Organization (WHO) has included the inte-
grated control and management of skin NTDs as a key strategy in its roadmap
2021-2030, “Ending the neglect to attain the Sustainable Development Goals”.

Capacity building of non-special-
ized front-line health workers is para-
mount to properly identify and man-
age common skin conditions because,
on average, skin NTDs represent less than
5% to 10% of the skin conditions usu-
ally seen by clinicians at the primary
health care level.

In 2020, WHO launched a mobile
application to facilitate diagnosis of
skin NTDs for training purposes1. The
current version published in Android
and iOS, available free of charge, works
offline and has an algorithm that allows
filtering by country to know which skin
NTDs are endemic in each location.
The app provides brief information on
how to diagnose and treat each condi-
tion. It is available in English, French,
Spanish and Portuguese.

WHO is now working on adding all
skin NTDs to the AI algorithm and
then plans to field test it in real clini-
cal settings. Discussions are also ongoin-
g with app developers to add AI for 24
common skin conditions.

It is important to emphasize that
the WHO app is intended for educa-
tional purposes only and by no means
should be considered a diagnostic
medical device. The app provides in-
formation and classifies images for
a very limited number of diseases so
it is always possible that a condition
not included in the app is causing the
lesions observed by the clinician. The
target audience of the app is primarily
non-specialized health workers, and it
does not replace the input of a der-
matologist when deemed necessary, by
either referring the patient or through
teledermatology consultations.

DNDI is collaborating with WHO
and sharing anonymized photographs to
train the AI algorithm of the app. •

Reference

FABIANO BORGES FIGUEIREDO and MONIQUE PAIVA DE CAMPOS,
Reference Laboratory in Leishmaniasis - Carlos Chagas Institute - Fiocruz PR

JOSE ANTONIO RUIZ POSTIGO
World Health Organization (WHO)

The link to download the beta version is available upon request for those willing to test it in the field. Contact us at postigoj@who.int.
Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis, accounting for about 90% of the estimated 600,000 to one million cases worldwide per year (WHO, 2023). In general, skin lesions are circumscribed to the site of the bite and persist for months or years, leaving permanent scars when they heal. In the New World, lesions rarely heal on their own and can progress to the more severe mucosal and diffuse forms. The deformations that result from the disease generate social stigma, psychological issues and loss of economic status, especially in poor communities (Bennis et al. 2018). This is why CL should be treated in a timely and definitive manner. In many countries, the treatment of CL is still based on a series of intra-muscular (IM) or intravenous (IV) injections of pentavalent antimonials (Sb V), pentamidine or amphotericin B (AmB), which are painful, require frequent hospital visits and cause undesir- able systemic effects (Esfandiarpour et al. 2012), making its application unfeasible for pediatric or pregnant patients. Moreover, the need for frequent visits to health units represents an access barrier to patients from remote regions and of limited financial means.

Oral miltefosine, which was previously only restricted to VL, was recently approved in Brazil for the treatment of CL, but with restrictions due to its teratogenic effect and variable efficacy. As for topical formulations developed with paromomycin or AmB, they have either shown variable efficacy depending on the species (Moradzadeh et al. 2019) or are innocuous (Lopez et al. 2018). Drug-related factors, such as large molecular size (AmB) and low lipophilicity (paromomycin), may contribute to low permeation through the lipid matrix of the stratum corneum, as well as hypertrophy of the epidermis at the borders of the ulcers, where infected macrophages are concentrated (Nylén and Eidsmo 2012).

Due to the lack of adequate topical treatments, local intralesion (IL) injections of pentavalent antimonials (Sb V), pentamidine or amphotericin B (AmB), which are painful, require frequent hospital visits and cause systemic toxicity. Parenteral injections of liposomal AmB do not have the same efficacy for CL as for visceral leishmaniasis (VL), since only 0.1% of injected AmB reaches the skin (Wijntjant et al. 2018). To reduce toxicity and increase treatment ac- ceptance by patients with CL, DNDi recommends searching for new ther- apeutic alternatives for oral or topical use that are safe and fast-acting (DNDi 2023).

In addition to already being widely used in clinical settings, AmB was chosen because of other advantages: 1) it is the most effective anti-leishmanial drug available; 2) it has low probability of resistance induction; and 3) it is a broad spectrum, therefore useful in regions where several Leishmania species co-exist or when accurate identification of the species is not possible. The biggest technical challenge was its amphoter- ic nature, which required the development of a new encapsulation process. AmB/ PLGA particles, which we registered as AmphoDepot®, of different sizes (0.5 μm to 20 μm), were produced for double depot and intracellular effect. After IL application of a single 5 μg dose of AmB in recent or established lesions in mice infected with L. amazonensis, AmphoDepot® was shown to be more effective in controlling the parasite load (97%) compared to free or liposomal AmB (Ambisome®). Pharmacokinetic studies have shown that, after a single IL dose, AmB is retained in the lesion for at least 15 days without being de- tected in the bloodstream during this period, unlike free AmB, which reaches plasma peak in 12h and remains cir- culating for 24h (Sousa-Batista et al. 2019). The efficacy of AmphoDepot® has been confirmed in hamsters infect- ed with L. braziliensis (in preparation).
AmphoDepot® was re-synthesized following GMP in a certified FUNED laboratory in Brazil, and sterilized with ionizing radiation, maintaining its physical and chemical properties, to be used in a clinical trial with patients with LCL in the state of Minas Gerais, Brazil (protocol being adjusted). Initially, the patient will receive a single dose of AmphoDepot® containing 0.8 mg of AmB in 0.8 mL divided into four perilesional sites in the test cohort. In case of non-remission after one month of follow-up, the patient should receive a second dose, with the final end point at three months after dose one. The control cohort will receive IL SbV.

It is worth noting that the total volume of AmphoDepot, of 0.8 mL/lesion, will be six times smaller than the 5 mL of SBV infiltration, which is expected to increase patient adherence. The maximum anticipated dose of SC AmphoDepot for four lesions will be only 45 μg/Kg (70 Kg), which is considerably lower than the daily dose of IV AmB deoxycholate (70,000 μg/Kg) or IV liposomal AmB (210,000 μg/Kg). It is also worth mentioning that AmphoDepot’s lyophilic powder is very stable at room temperature, which is an advantage for transport, storage and use in tropical regions with limited resources. Finally, since the TG of PLGA is 42°C, it is expected that, in case of low therapeutic response, the combination of AmphoDepot with thermotherapy at a more tolerable temperature (e.g., 45°C), instead of the conventional 50°C/30'', may accelerate the local release of AmB, promoting faster and safer healing. The AmphoDepot-thermotherapy therapeutic combination is underway in preclinical studies.

The hope is that this new therapy for LCL can bring more comfort and safety to patients and reduce hospital treatment costs.

References

IN PAKISTAN

MSF’S RANDOMISED CLINICAL TRIAL FOR NEW TREATMENT MODALITIES FOR CUTANEOUS LEISHMANIASIS CAUSED BY LEISHMANIA TROPICA IN PAKISTAN

Cutaneous leishmaniasis (CL) is highly endemic in Pakistan and causes a large public health burden, with an estimated 50-100,000 new cases annually. The most affected provinces are Baluchistan and Khyber Paktunkhawa, in western and north-western Pakistan, where Leishmania tropica is the predominant species. Since 2008, Médecins Sans Frontières (MSF) has supported the Ministry of Health with specialised CL clinics providing free diagnosis and treatment services in Qetta (Balochistan), and Peshawar (Khyber Pakhtunkhwa), where MSF has treated a total of 40,000 CL patients to date.

For decades, the mainstay treatment for CL is with antimonial injections (meglumine antimoniate or sodium stibogluconate). The treatment consists of a 3-4-week course of painful intralymphatic injections of a 3-4-week course of painful intralymphatic injections, which can be conducted in peripheral health facilities and to patients who have contraindications to systemic antimony treatment (elderly people, and patients with cardiovascular or renal disease, or diabetes). A combination of thermotherapy and miltefosine may help to increase the efficacy of miltefosine in the treatment of CL caused by L. major, but no studies have been conducted to evaluate its efficacy in L. tropica infections. This oral treatment could benefit CL patients as it can be provided in peripheral health facilities and to patients who have contraindications to systemic antimony treatment (elderly people, and patients with cardiovascular or renal disease, or diabetes). A combination of thermotherapy and miltefosine may have the advantage of increased efficacy of treatment with different modes of action, as well as a reduced length of treatment with miltefosine.

For these reasons, a randomised clinical trial we aim to evaluate whether miltefosine monotherapy (28 days), thermotherapy (single session), and the combination of miltefosine (21 days) and thermotherapy are effective, safe and tolerable alternative treatment options for cutaneous leishmaniasis, and non-inferior to the standard of care treatment with intralesional meglumine antimoniate injections. The aim is to achieve a sample size of 208 patients per arm (82 total).

In October of 2022, patient recruitment started in two MSF clinics in Qetta, and in early 2023 a third study site is planned to start in the MSF clinic in Peshawar. A futility analysis per arm is planned once at least 120 patients (30 per study arm) complete their nominal D91 follow-up visit.

After the study we hope to have an effective and safe alternative first-line treatment for patients with cutaneous leishmaniasis caused by L. tropica which can be provided at primary health care level.
The Pan American Health Organization (PAHO) continues to support countries where leishmaniasis are endemic by strengthening actions to achieve the goals of control and elimination of leishmaniasis as a public health issue, in accordance with the mandate given by the PAHO initiative for the elimination of diseases and the World Health Organization (WHO) roadmap for neglected tropical diseases (2021-2035).

To achieve the objective of controlling cutaneous leishmaniasis and eliminating visceral leishmaniasis as a public health issue, actions such as access to early diagnosis, adequate treatment of cases and reducing contact between people and vectors have been promoted to reduce the morbidity and mortality of leishmaniasis. In line with the integrated sustainable framework of PAHO’s Disease Elimination Initiative, PAHO’s Strategic Fund is mandated to support countries in improving access to and availability of safe, effective, high-quality, and affordable antileishmanial drugs.

Since 2004, the Strategic Fund has included in its Medicine List antileishmanial drugs such as meglumine antimoniate 300 mg/ml, liposomal amphotericin B 50 mg, miltefosine 10 mg and 50 mg, and pentamidine isethionate 300 mg. These drugs make up the recommended therapeutic arsenal for systemic treatments of the leishmaniasis. They are difficult to acquire for most countries in the region because they are not available in regional pharmaceutical markets and do not have registration, so the Strategic Fund is one of the ways to make them available through established agreements and exceptions issued by member countries to import these products of high value for health care.

In the last five years, the Strategic Fund has procured antileishmanial drugs at affordable prices for 15 countries in the Region of the Americas, especially those that have been negotiated within the framework of the WHO Advisory Committee on Procurement (see Fig. 1).

For antimonial drugs, a price of USD 1.53 per vial has been provided, and for liposomal amphotericin B, USD 16.25 per vial, representing an approximate cost per treatment of USD 92 and USD 1,000, respectively. In this five-year period (2018-2022) the SF has acquired more than 75,000 treatments (see Table 1) among six different products (see Table 2).

Reference
One of the most significant challenges in acquiring these products is that some continue to be manufactured solely by innovative laboratories. The lack of multi-source generic drugs is a major access barrier, as it severely hinders negotiation for lower prices. Along these lines, the Strategic Fund has worked with endemic countries to consolidate the demand, promoting joint purchases in order to reach affordable prices through economies of scale. In the last year, 10 countries in the region submitted their estimates to consolidate demand and help the manufacturing laboratories plan their production and distribution. A more visible demand in turn helps to mitigate the risks due to production problems, guaranteeing supply and ensuring the production and transport capacity.

The Strategic Fund has provided technical cooperation to plan and consolidate demand to meet needs, develop drug procurement management, and build strategic alliances with other partners and procurement agencies to enable global demand and avoid shortages. This helped to improve access to these medicines, promote quality and efficient procurement, and increase coverage of the affected population. Likewise, the therapeutics equipment recommended for local treatment of localized cutaneous leishmaniasis has been included in the Strategic Fund List according to predefined criteria.

In 2022, the Regional Leishmaniasis Unit and the PAHO Strategic Fund invited the Ministries of Health of five endemic countries for leishmaniasis in the Region of the Americas (Bolivia, Brazil, Colombia, Guatemala and Nicaragua) to a forum to share methodologies and scenarios used for demand planning for antileishmanial drugs and diagnostics. These countries are part of different sub-regions and account for 94% of the cases of visceral leishmaniasis and 65% of the cases of cutaneous and mucosal leishmaniasis. As conclusions of this meeting, challenges and opportunities in the estimation of needs and procurement have been identified, and the development of a common, validated and precise methodology, applicable to the entire region, has been considered.

Additionally, PAHO has supported the region with donations of medications from the CDE regional warehouse in Panama to meet the supply of small volumes. In the last two years, 18 shipments of medications have been distributed from the warehouse to seven leishmaniasis-endemic countries, representing around 230 standard treatments. This is an interprogrammatic effort to address emergencies in the region by maintaining a strategic stock to avoid shortages.

The Strategic Fund will continue to help strengthen actions to achieve the goals of controlling and subsequently eliminating leishmaniasis, working with the countries in the region to improve access to drugs and diagnostic supplies, negotiating better prices, searching for generic alternatives, strengthening capacities for the quantification of needs and joint purchasing, and improving supply chain management to ensure the timely availability of medications in health care services.

TABLE 2 - Reference prices for antileishmanial drugs through the PAHO Strategic Fund

<table>
<thead>
<tr>
<th>Drug description</th>
<th>Unit of measurement</th>
<th>FOB/FCA Price (USD)</th>
<th>Treatment cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meglumine antimoniate 300 mg/ml</td>
<td>Ampoule</td>
<td>1.53 USD</td>
<td>92 USD</td>
</tr>
<tr>
<td>Liposomal amphotericin B 50 mg</td>
<td>Val</td>
<td>16.25 USD</td>
<td>1000 USD</td>
</tr>
<tr>
<td>Amphotericin B deoxycholate 50 mg</td>
<td>Val</td>
<td>4.82 USD</td>
<td>200 USD</td>
</tr>
<tr>
<td>Miltefosine 50 mg</td>
<td>Box of 56 tablets</td>
<td>110 USD</td>
<td>165 USD</td>
</tr>
<tr>
<td>Miltefosine 10 mg</td>
<td>Box of 56 tablets</td>
<td>150 USD</td>
<td>224 USD</td>
</tr>
<tr>
<td>Pentamidine isethionate 300 mg</td>
<td>Val</td>
<td>13.8 USD</td>
<td>138 USD</td>
</tr>
</tbody>
</table>

Reference

1https://www.paho.org/en/paho-strategic-fund

PERSPECTIVES OF SOCIAL MOBILIZATION FOR PEOPLE AFFECTED BY LEISHMANIASIS

This article aims to highlight how important it is to resume the legacy left by Moacir Antônio Zini, president of the Brazilian Association for Leishmaniasis Patients (ABRAPleish) – who left us in December 2020 – by reactivating the social mobilization of people affected by leishmaniasis.

Patients affected by Neglected Tropical Diseases (NTDs), who already endure baseline vulnerability, correspond to millions of people unseen and forgotten by control and prevention programs or pharmaceutical innovation. Thus, creating associations of affected people ends up being even more strategic for them. Besides several studies already made available, history itself shows us how much potential social movements in health have and their importance (see for instance the creation of the Brazilian Unified Health System), especially regarding community engagement and definition of health policies and strategies.

"After Moacir passed away, the Association lost a great leader. And that’s sad because I knew how much Moacir fought to get ABRAPleish up. Now I see it falling apart little by little as I struggle by myself to keep it alive, with no other members and with major financial difficulties. Not having the Association will be a great loss for me and many other patients who tirelessly seek visibility and need to be heard. Last year, when I managed to attend the Forum’s meeting, my hopes were renewed. I have many ideas to put into practice, but I need help," states Talita Zini, Moacir’s widow and current president of ABRAPleish.

Therefore, having an active association of people affected by leishmaniasis is paramount and urgent. It is yet another opportunity to expand social control over public management, to participate in developing health policies, to influence strategies and decision-making, to pressure politicians for more investment in research and development on leishmaniasis or NTDs in general, and to demand attention in health and caregiving by strengthening primary care.

In that sense, ECLIPSE (Empowering people with cutaneous leishmaniasis: intervention program to improve the patient’s journey and reduce stigma through community education) offers a unique opportunity. It is a multisector program and a global study investigating the sociocultural impact of cutaneous leishmaniasis. In Brazil, it is being implemented in the Southern Bahia Lowlands. Groups are formed in each community, bringing together local leaders and other key players, which enabled the project to be a participatory and integrated network to discuss, think about and/or elaborate group actions and practices regarding their needs and problems related to health, territory, and commitment.

ECLIPSE and FSREDIN (Brazilian Social Forum for Fighting Infectious and Neglected Diseases) play a key role in finally achieving active social mobilization of patients affected by leishmaniasis. Both ECLIPSE’s and ABRAPleish’s delegations were present at the Forum’s latest meeting, held last November, during the MEDTROP Conference, opening room for various talks and ideas. We hope to soon have news about resuming our Association, or creating a new one, with a clear and concrete agenda, to finally guarantee its sustainable autonomy.
Join the new redeLEISH webforum!

In December 2022, we migrated to a new system, more modern and user-friendly

Access the online platform together with experts from all over Latin America to receive and share information on leishmaniasis research

The forum works as a social network in which you can also receive updates through your email. Members can interact and post news, facilitating communication among collaborators. We encourage the sharing of documents and scientific papers, the promotion of events and debate, and the possibility of asking questions and making new contacts.

Register using the link or the QR code
tinyurl.com/3sncc9z9

ACKNOWLEDGMENTS

Editorial Board:
Byron Arana, Joelle Rode and Marina Certo

Coordination:
Joelle Rode

Production:
Camilla Muniz and Marina Certo

Translation:
Carolina Alfaro and Scriba Traduções

Copyediting:
Camilla Muniz, Carolina Alfaro, Joelle Rode, and Marina Certo

Photos:
Sydelle Willow Smith-DNDi and Vinicius Berger-DNDi

Design:
Alertaldesign

DNDi Latin America
Rua São José, 70, sala 601- 20010-020 - Rio de Janeiro, RJ - Brazil
Tel: +55 21 2529-0400 | www.dndial.org

DNDi Global Headquarters
15 Chemin Camille-Vidart 1202 - Geneva - Switzerland
Tel: +41 22 906 9230 | Fax: +41 22 906 9231 | www.dndi.org